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Alrstraet--A new turbulence model to calculate complex turbulent heat transfer in separating and 
reattaching flows is proposed. This new model is a modified version of the latest low-Reynolds-number 
two-equation heat-transfer model, in which the main improvement is achieved by introducing the Kol- 
mogorov velocity scale, u, ~ (re)'/4, instead of the friction velocity u, to account for the near-wall and low- 
Reynolds-number effects in both attached and detached flows. After investigating the characteristics of 
various time scales for the heat-transfer model, we adopted a composite time scale which gives weight to a 
shorter scale among the velocity- and temperature-field time scales. It is validated that the present model 
predicts quite accurately the turbulent heat transfer in separating and reattaching flows downstream of a 
backward-facing step, which involve most of the essential physics of complex turbulent heat transfer, under 
various conditions of flow Reynolds number and upstream boundary-layer thickness. In addition, the 
computational results have revealed several new mechanistic features of the turbulent heat transfer in 

separating and reattaching flows. 

1. INTRODUCTION 

In many practical applications, flows accompany sep- 
aration and subsequent reattachment. This flow 
detachment and reattachment almost always deter- 
mines the key structure of the flow field and sig- 
nificantly influences the mechanism of heat transfer. 
For reliable evaluation of the turbulent heat-transfer 
coefficient in separating and reattaching flows, it is 
crucial to use turbulence models which can predict 
both the velocity and temperature fields with high 
accuracy. 

So far, the k-e  model in combination with the 
assumption of a constant turbulent Prandtl number, 
Prt, has been frequently used to predict the heat trans- 
fer in separating and reattaching turbulent flows (see 
Launder [1]). For example, to grasp the essential phys- 
ics of complex turbulent heat transfer in such flows, 
several attempts with this type of approach have been 
made to simulate the heat transfer downstream of a 
backward-facing step [2-4]. Though such an approach 
is useful, major problems remain: (1) In calculating 
the turbulent heat transfer by the k-e  model with a 
constant Prt, the wall functions are usually adopted 
as the boundary conditions. However, their appli- 
cation to recirculating flow regions is quite ques- 

tionable. (2) The calculations with the previous k-~: 
models usually give 15-20% underprediction of the 
flow reattachment length in a backward-facing step 
flow [5, 6], although it is the most fundamental quan- 
tity to be predicted in separating and reattaching 
flows. (3) In situations where the similarity between 
the velocity and temperature fields does not hold, as 
in a boundary layer or a pipe flow subjected to a 
sudden change of the wall thermal condition [7, 8], 
Prt is far from constant in contrast to the situation in 
a simple boundary-layer flow where the velocity and 
the temperature fields develop simultaneously. Thus, 
for the accurate prediction of heat transfer in complex 
turbulent flows, we need to use turbulence models 
which fulfil the following requirements : (1) The flow 
fields can be simulated with sufficient accuracy. (2) 
The correct near-wall limiting behavior is reproduced 
for both the velocity and the temperature fields. (3) 
The assumption of constant Prt is avoided. (4) The 
temperature-field time scale is appropriately taken 
into account. 

In an earlier paper [9], we proposed a new k-~ model 
for the application to flow fields with separation, 
which was modified from the low-Reynolds-number 
k-~ model of Nagano and Tagawa (hereinafter 
referred to as the NT model) [10]. The proposed model 
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NOMENCLATURE 

A D b  AD2 , A~., B:., C~, C m constants in heat- 
transfer model functions 

b 0 anisotropy tensor, u~uj2k- 6~j/3 
Cf mean skin friction coefficient, 

rw/(p02o/2) 
C~ fluctuating skin friction coefficient 
Cpb Cp2, CD, CD2 constants in transport 

equation for ~t 
C¢,, C~,~, C~2 constants in velocity-field 

turbulence model 
Cp specific heat at constant pressure 
D channel width upstream of step 
ER channel expansion ratio, (D + H)/D 
f,, f:,.,+d functions in velocity-field 

turbulence model 
fr, , fv2,fDbfm functions in temperature-field 

turbulence model 
H height of backward-facing step 
k turbulent kinetic energy, u~u]2 
L, turbulent length scale for heat 

transfer, ~t/k 1'2 
N~, N, numbers of grid points in 3- and r/- 

directions, respectively 
n local coordinate normal to wall 

surface 
P mean static pressure 
Pr, Prt molecular and turbulent Prandtl 

numbers 
qw wall heat flux 
R time-scale ratio, rt/'v~ 
R t turbulent Reynolds number, k2/vf; 
ReH Reynolds number based on step 

height, ~7oH/v 
Reo Reynolds number based on 

momentum thickness, OoO/v 
St Stanton number, 

qw/[pCpl3o( T W -- To) ] 
T, t mean temperature and temperature 

fluctuation 
T + nondimensional mean temperature, 

(Tw- -  ~r)/tr 

7~ reference temperature, qwH/(pCpO 0 
t 2 temperature variance 
t~ friction temperature, qw/(pcpuO 
(_7 mean velocity in x-direction 
/7~, u~ mean velocity and velocity 

fluctuation in/-direction 
O + nondimensional mean velocity, 

O/u~ 
u, v velocity fluctuations in x- and y- 

directions, respectively 
u~: Kolmogorov velocity scale, 

(v~) TM 

m friction velocity, 

)(R 
X 

Xi 

Y 

y + 

),* 

D/Dz 

()  

flow reattachment length 
Cartesian coordinate in streamwise 
direction with x = 0 at step 
location 
Cartesian coordinate in/-direction 
Cartesian coordinate normal to 
streamwise direction with y = 0 
at step bottom 
nondimensional distance from wall 
surface, my/v 
nondimensional distance from wall 
surface, u,:y/v 
substantial derivative, 
~l'& + O,~h?x, 
ensemble-averaged values. 

Greek symbols 
~, cq molecular and eddy diffusivities tbr 

heat 
6 99% boundary layer thickness 
6 o Kronecker delta 

dissipation rate of turbulent kinetic 
energy, v(Oui/~X/)(Oui/~x,) 

e, dissipation rate of t2/2, 
(at/0x,) (at/ax,) 

generalized coordinate in inlet-to- 
outlet direction 

r/ generalized coordinate in lower to 
upper wall direction 

0 momentum thickness 
~- Von Kfirmfin's universal constant 
v, vt kinematic viscosity and eddy 

viscosity 
p density 
% ~r,, ~rh, ~r~ model constants for turbulent 

diffusion of k, e, ~ and E~ 
r time 
rm characteristic time scale for 

turbulent heat transfer 
to, r, time scales of velocity and 

temperature fields, k/e, t2/2~:t 
rw wall shear stress. 

Subscripts 
e 

i , j  

m a x  

max(x) 
n 

R 
W 

0 

outer edge of boundary layer 
1 and 2 denote x- and y-directions, 
respectively 
maximum value on step side wall 
maximum value at a location x 
normal direction from wall surface 
flow reattachment point 
wall surface 
reference value at inlet position 
(x = - 3.8H) of back-step channel. 
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can reproduce the near-wall limiting behavior as cor- 
rectly as the original one [9]. In addition, the accuracy 
in calculating separating and reattaching flows down- 
stream of a backward-facing step has been dramati- 
cally improved with this new model. In particular, the 
calculated flow reattachment lengths were in excellent 
agreement with the measurements for a variety of 
experimental conditions [9]. 

Over the last several years, two-equation heat-trans- 
fer models have made rapid progress [11-13], leading 
to substantial improvements in the accuracy of the 
heat-transfer prediction in complex turbulent flows. 
Among the existing two-equation heat-transfer 
models, the model developed by Nagano et al. (here- 
inafter referred to as the NTT model) [12] is regarded 
as one of the most reliable. The NTT model can cor- 
rectly reproduce the near-wall limiting behavior of 
scalar turbulence quantities for any wall thermal con- 
ditions, and provides accurate predictions for the 
attached flow heat transfer [12, 13]. However, since 
the model functions of the NTT model contain the 
friction velocity u ,  it breaks down around the sep- 
arating and the reattaching points where u, = 0. As a 
result, contrary to the real phenomena, the NTT 
model forces the turbulent heat flux to vanish there. 

In this study, we propose a new two-equation heat- 
transfer model, based on the modification of the NTT 
model [12, 13]. The principal improvement is made 
using the Kolmogorov velocity scale u , =  (re) TM 

instead of the friction velocity u, to account for the 
near-wall and low-Reynolds-number effects. As dis- 
cussed in the preceding paper [9], the velocity scale u~, 
vanishes at neither the separating nor the reattaching 
points in contrast to the friction velocity u~. Besides 
this major modification, we have examined in detail 
what type of hybrid time scale is best suited to the 
characteristic time scale for turbulent heat transfer 
under complex thermal conditions. 

The calculations show that the new model is capable 
of predicting the heat transfer in separating and re- 
attaching flows downstream of a backward-facing 
step quite successfully. The calculated distribution of 
the Stanton number, which is the most important 
quantity in heat transfer, is in almost perfect agree- 
ment with experiments under various conditions of 
the Reynolds number and the upstream boundary- 
layer thickness. Furthermore, from the present com- 
putational results, we have elucidated how the flow- 
field structures affect the heat-transfer mechanism in 
separating and reattaching flows. 

2. TWO-EQUATION MODEL FOR VELOCITY 
FIELD 

A velocity field is described with the following gov- 
erning equations based on the eddy-viscosity approxi- 
mation [9, 10]: 

~x~ = o (l)  

with 

DO, 
D'r p Ox~ 

(2) 

D k  ~O f {  v t \ ~ k )  __OLT~ 
- ~ I v +  - - ] = - ~ - u ~ u j = - =  - e  

D~ ~?x i \ akJ ~XJ ~xj 
(3) 

De ~, { (  vt \  0e, "} t: _ _ O G ,  e, 2 
D r  ~x  i v +  - - | ~ - } - - C d  7u ,  u i ~ -  a ,d  c x  J K c,x, -- C,z£ ~- 

(4) 

In equations (3) and (4),~ is the model function, and 
Cd, C,.2, aK and a~ are the model constants. 

In modeling the eddy viscosity, vt, in equation (5), 
it is necessary to employ a turbulent length scale which 
works appropriately in both the regions away from 
and close to the wall [10, 14]. In our preceding paper 
[9], we proposed the following formula for v, : 

\ l a JJ  

(6) 

where y* = u~y/v. In equation (6), fd is the model func- 
tion introduced to accord consistently with the stan- 
dard k-e model formulation of vt = C~,k2/e away from 
the wall, i.e.fd = exp { -  (R,/200)2}. Equation (6) can 
be rewritten in the conventional form as follows [9] : 

k 2 
v, = C , , f , - -  (7) 

E 

where 

5 Rt 2 

(8) 

The other model function and the model constants 
used in the present modified k-e model are as follows 
[9]: 

3.1JJ 

C~, = 0.09, O'k = 1.4, ~,: = 1.4, C~t = 1.5, C,:2 = 1.9. 

The most important feature of the present k-~: model 
is the introduction of the Kolmogorov velocity scale, 
u~ = (re) TM, instead of the friction velocity u~, to 
account for the near-wall and low-Reynolds-number 
effects in both attached and detached flows [9]. This 
model can reproduce the correct near-wall asymptotic 
relations of turbulence, i.e. k oc y2, ~ oc 9 ,  v, Qc y3 and 
- u~ oc y3 for  y ~ O. 
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3. TWO-EQUATION MODEL FOR THERMAL 
FIELD 

3.1. Governing equations 
A thermal field can be described with the following 

governing equations by introducing the eddy diffu- 
sivity for heat, a, : 

D T _  ~ (~,~TUF_uff) (10) 
D~ ~?XJ c Xj 

Dt  2 0 f /  ~t\~t ~) - - ~ T  
Dr - ~XJ ~ +  --1--~--2u/t'~'7"'~hJ OX/J C.X~ --2e, (1 1) 

De., 6~f{  a t \ ~ e  t ] g t - - 6 3 ]  p 
Dr - ~.v, l ~ +  ~l~x 'C-CP'"e '=uj t  " " 

O /  " j )  t 2 '- J 

g t - - ~ / - 7 i  C D I J D I  '~L " e,~:' -Ce2fe2~u,UiOx~- t2 - CmJD2 ~-  (12) 

where 

a7 ~ 
-uj t  = a , - - .  (13) 

0xj 

In equations (11) and (12), .)'~,1,./~,2, .ira, JD2 are the 
model functions and Cp~, Cp2, Cm, CD2, ah and a ,  are 
the model constants as discussed below. 

3.2. Modeling eddy dif/usivity Jbr heat 
In modeling at in equation (1 3), we need to adopt 

an appropriate turbulent length scale characterizing 
the turbulent heat transport in both the regions away 
from and close to the wall, as in the modeling of a 
velocity field [10, 14]. Furthermore, it is extremely 
important in modeling a, to take into account the 
relation between the velocity- and temperature-field 
time scales [11 13]. 

First, we consider how the time scales should be 
incorporated in modeling at. The eddy diffusivity for 
heat in the two-equation heat-transfer model can be 
generally expressed as follows : 

g, OC k-t- m = k l  e ( k t ' 2 r m )  (14) 

where Vm is the composite (hybrid) time scale charac- 
terizing turbulent heat transfer which depends on both 
the velocity-field time scale, % = k/s, and the tem- 
perature-field time scale, r, = 7~/2et. Equation (14) 
indicates that at consists of the turbulent velocity scale, 
k ~/2, and the turbulent length scale, (k~"Zrm). The com- 
posite time scale, rm, proposed in the previous studies 
[1 1, 12, 15] can be described with the following gen- 
eralized formula : 

/ m "fm OC ( f u r  t ) = % R  m (l+m = 1) (15) 

where R = r,/r,  is the time-scale ratio. Note that this 
type of hybrid time scale is also used in a turbulent 
heat-flux model (e.g. see Elghobashi and Launder 
[16]), and there are several choices in the combination 
of / and m. Zeman and Lumley [17], on the other 
hand, introduced the following composite time scale 
in modeling a buoyancy-driven mixed layer : 

Tm OC ( 1 / r u + C m / * , ) - '  = r . { R / ( C m + R ) }  (16) 

where Cr, is a constant. The composite time scale 
defined by equation (16) is the harmonic average of 
the velocity- and temperature-field time scales. This 
suggests that the shorter time scale among zu and z, is 
more important for turbulent heat transfer. Note that 
this type of hybrid time scale has been adopted in a 
recent turbulent heat-flux model [18]. In the present 
study, we construct two-equation heat-transfer mod- 
els based on three kinds of time scales given by equa- 
tion (1 5) with different m and equation (16). 

On the other hand, we should appropriately intro- 
duce a model function in at to account for wall-prox- 
imity effects. Generalizing the formula for a, in the 
NTT model [12], cq can be expressed as follows, based 
on equation (14), except in immediate proximity to 
the wall surface : 

exp( exp( ;)} ,,7, 
Here, we have adopted y* instead o f )  ,+ for the model 
application to separating and reattaching flows. We 
have determined the constants A~ and B~ with ref- 
erence to Cebeci's discussion [19], i.e. A~. = 14, which 
is the same as in equation (6), and B~ = 14/Pr 1'2. 

In close proximity to the wall, the conservation of 
the temperature variance [equation (11)] is main- 
tained by dissipating almost all t2 diffused from the 
region away from the wall, which is the same mech- 
anism as in the velocity field [10, 20]. Therefore, it is 
appropriate to adopt a high-wavenumber-range scale 
dominating the dissipation process in modeling ~, 
close to the wall. Considering that the ratio between 
the temperature- and velocity-field time scales for dis- 
sipative motions is represented by (R/Pr) t:2 [18], the 
eddy diffusivity for heat in proximity to the wall can 
be expressed as follows: 

~t oc v,(R/Pr) 1'2. (18) 

The eddy diffusivity for heat given by equation (18) 
has exactly the same functional dependency of the 
time-scale ratio R as in the NTT model, so that this 
representation for a, can reproduce the near-wall 
asymptotic relations correctly in both cases with and 
without the temperature fluctuations on the wall sur- 
face [12, 13]. 

Thus, we propose the following expression for the 
eddy diffusivity for heat using the characteristic time 
scale defined by equation (16) (hereinafter referred to 
as model A):  

= c f k 2 /  2R \ , ,  - '  (2R)"2 . )  
• p~7--r .ld ~ 

x {1 _exp  (_ )1~)}  {1 _exp  ( Prl'2Y*~ 14 j j (19) 

Here, we put Cm = 0.5 so that the resultant turbulent 
Prandtl number Pr~ ( =  v,/at) may be equal to a stan- 
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dard value of 0.9 when values of Ca and R are set to 
C~. = 0.1 as in the NTT model [12] and R = 0.5, as is 
commonly assumed in an equilibrium boundary-layer 
heat transfer. We also examine two formulae for ~, 
based on equation (15) for comparison. The first is 
the representation with m = 1 (hereinafter referred to 
as model B) : 

k 2 I 4 
oq = Ca (2R) + 3k';Z _.~___r j,~; 

x {l _exp (_ Y~-)} {1 _exp ( Pr'/EY*'~ 
14 //J (20) 

and the second is that with m = 1/2 (hereinafter 
referred to as model C) : 

~, = C~ (2R)':2+3kl"2 \ 7 )  ~ J d ~  

x{l--exp(--~4)}{1--exp( prI'2y*~]~ j j .  (21, 

The prime difference among these three models A-C 
resides in the representation of the characteristic time 
scale for turbulent heat transfer in the region away 
from the wall. Note, however, that models A42 give 
almost the same thermal field predictions for an equi- 
librium flow because the time-scale ratio R becomes 
about 0.5 there. Besides, in proximity to the wall 
surface, models A-C show exactly the same near- 
wall limiting behavior, i.e. 0~ t oQ vt(R/Pr) 1/2. Thus, all 
of them can correctly reproduce the near-wall asymp- 
totic relations, regardless of the existence of wall-tem- 
perature fluctuations (see ref. [13]). 

3.3. Model constants and model functions 
The model constants and the model functions used 

in equations (10)-(21) are determined in the following 
way. 

First, Ca, Ct)~ and Co2 are set to 0.1, 2.0 and 0.9, 
respectively, following the lead of the NTT model [12, 
13]. Concerning the turbulent diffusion constants cr h 
and %, we assume ah -- ak and % ~ a~, and set both 
of them to the same value of 1.6. The constants Cp~ 
and Ca2 are to be determined with the relation for the 
'constant-stress and constant-heat-flux layer' [ 11-13] : 

C D I  - -  Cp1 = 2R {Cp2 - -  C D 2  -i-  (K2/Prt)/(G,bN/~u)}. 
(22) 

Thus, substituting the standard values of C~ = 0.09, 
R ~ 0.5, Pr~ "- 0.9 and x -~ 0.41 into equation (22), 
we obtain the optimum values of Cpl and Co2 after 
examining the calculated results [see equations (26)- 
(28)]. The model functions for andfDz can be expressed 
in the same form as in the NTT model [12] by taking 
account of the wall-limiting behavior : 

Ao,/J 

with f2 = 1 - 0.3 exp { - (Rt/6.5)2}, the consequence of 
equation (9). Here, AD~ and AD: are determined after 
numerical optimization [see equations (25)-(28)]. We 
put fpz at unity so as to be consistent with the velocity- 
field model [9], as discussed in the NTT model [12]. 
In the NTT model [12],fp~ is also assumed to be unity. 
If we set fp, to unity, however, we may encounter 
computational instability in some kinds of heat-trans- 
fer fields where the similarity between the velocity and 
temperature fields does not exist, as in the experiment 
of Antonia et al. [7]. On the other hand, the model 
developed by Nagano and Kim [11] does not suffer 
from any instability, though it uses the model func- 
tions offaj =fo l  ---- 1.0, From these facts and some 
computational attempts, we have concluded that 
numerical instability can be avoided by setting 

fP1 "~fDI- Thus, we setJp~ =JD~ in the present model. 
Note that the present heat-transfer model with this 
modification for fp~ gives almost the same results as 
with the NTT model [12] for the fundamental heat- 
transfer problems, as will be shown later. 

In summary, the model constants and the model 
functions which are commonly used in models A-C 
are as follows : 

C~ = 0,1, CDI = 2.0, CD2 = 0.9, 

trh = 1.6, cr~ = 1.6, (25) 

.fpt =fD, = {1 - e x p  (_y.)}2 

(i.e. ADI = 1.0), JP2 = 1.0. 

The model constants optimized for each model are as 
follows : 

Cpt = 1.90, Cp2--0.60, AD2=5.7 for modelA 

(26) 

Cp~ = 1.85, Cp2 = 0.65, ADZ = 5.5 for modelB 

(27) 

Cpl = 1.95, Caz -~ 0.55, AD2 = 5.8 for model C. 

(28) 

Some explanations should be made regarding the 
dependence of the Prandtl number. The primary sub- 
ject of the present study is to propose a new heat- 
transfer model to be applied to separating and re- 
attaching flows. With this in mind, we have only 
referred to some established discussions on the 
Prandtl-number dependence [18, 19] in constructing 
the present heat-transfer model, and restricted the 
model application only to heat-transfer problems in 
air (Pr = 0.71). To treat the heat transfer at Pr >> 1 
or Pr << 1, the dependence of Pr should be considered 
in modeling not only the eddy diffusivity for heat but 
also some model functions. The problem is now under 
investigation. 



1472 K. ABE et al. 

4. MODEL ASSESSMENT IN ATTACHED FLOW 
HEAT TRANSFER 

To confirm the basic accuracy of the present heat- 
transfer models (models A-C), we applied them to 
two representative turbulent heat-transfer problems 
in attached flows. The first test case is a boundary- 
layer heat transfer investigated experimentally by Gib- 
son et al. [21], and the second one corresponds with 
the experiment by Antonia et al. [7]. In the first prob- 
lem [21], the wall surface is heated at a constant wall 
temperature from the beginning of a boundary-layer 
development. In the second problem [7], the wall is 
kept adiabatic in the initial development of a bound- 
ary layer, and then suddenly heated with a constant 
heat flux from a location where the boundary layer 
has developed to some extent. It should be mentioned 
that the latter case [7] has been found to be too difficult 
to simulate accurately with the constant turbulent- 
Prandtl-number assumption because the analogy 
between the velocity and temperature fields no longer 
holds. 

The computational procedure used in the present 
study was the same as that of Hattori et al. [22], which 
was based on a finite-volume method developed by 
Patankar [23] and Leschziner [24]. The number of 
grid points across the boundary layer was 201, where 
the grid points were concentrated in the neighborhood 
of the wall surface to resolve the viscous sublayer 
sufficiently and to obtain a grid-independent solution 
[22]. For the technique to specify the boundary con- 
ditions, we followed Youssef et al. [13]. The tem- 
perature variation on the wall surface was set to zero 
to meet the measurement conditions. 

The calculated mean-velocity and mean-tem- 
perature profiles corresponding to Gibson et al.'s 

experiment [21] are shown in Fig. 1. From Fig. l(a), 
it can be seen that the present velocity-field model [9] 
predicts the mean-velocity profile as accurately as the 
NT model [10]. We can also acknowledge from Fig. 
1 (b) that all three models A-C give almost the same 
results in good agreement with the experimental data 
[21] as the NTT model [12]. 

The predicted streamwise development of mean- 
temperature for the second test case (Antonia et al. 

[7]) is shown in Fig. 2, and the relevant development 
of turbulent heat flux is presented in Fig. 3. The 
location x in Figs. 2 and 3 indicates the streamwise 
distance from the beginning point of heating. From 
these two figures, it can be seen that all three models 
A-C show good agreement with the experimental 
data, whereas the conventional prediction with the 
constant turbulent Prandtl number, Pr, = 0.9, shows a 
substantial underprediction for the mean-temperature 
variation. 

The foregoing comparisons have proven that the 
present models can quite accurately predict both the 
velocity and the temperature fields in attached tur- 
bulent flows even with a sudden change of wall ther- 
mal conditions. 

30 

2O 
J~ 

lO 

0 
10 o 

(a) 
' ' ' ' ' ' " 1  ' ' ' ' ' ' " 1  ' ' ' ' ' ' " l  

O Experiment (Gibson et al.) 

. . . . .   %Lo od°' 

U+=2A41n y++5.0 

UeJ/J =L41 × 106 - 1 U + = y +  

- , , ,,,,,,I , , i i iiiii , i , , ,lit[ 

101 y+ 10 2 10 3 

(b) 
30 . . . . . . . .  ) . . . . . . . .  t . . . . . . . .  t 

O Experiment (Gibson et al.) 

Model A 

2 0  Model B 
Model ¢1c  / c 

lO 
~ '=pr  y* ~ l  ,#" 

J U¢/~ - lA1  XIO 6 m -1 

10  ° 101 y* 102 103 

Fig. I. Comparison with the experiment by Gibson et al. in 
boundary layer : (a) mean velocity ; (b) mean temperature. 

3 0  . . . . . . .  '1 , , , , , , , , i  , , , , , , , ,  

o Experiment (Antonia et al.) 
- -  M o d e l  A 
- - - - -  M o d e l  B 

M o d e l  C 
20 . . . . .  Prt=0 

lO 

0 ~ - - - - - - - - - - ' - ~ x = 0 ' 5 m  ,~- ~-~--'=-- 

10  o 101 y+ 102 103 

Fig. 2. Streamwise development of mean temperature. 

5. APPLICATION TO BACKWARD-FACING STEP 
FLOWS 

5.1. M o d e l  assessment with D N S  data on f l o w  f ie ld  
As discussed in the preceding paper [9], the accurate 

prediction of heat transfer in separating flows is 
impossible without reliable predictions of the flow 
field in the recirculating region. We have shown that 
the velocity-field model described in Section 2 predicts 
backward-facing step flows quite successfully for vari- 
ous flow conditions. 

Recently, Le et al. [25] performed a direct numerical 
simulation (DNS) of a backward-facing step flow. 
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1 ' ' ' ' I ' ' ' ' 

~ o  Experiment (Antonia et al.) 

I} x:l"lSm 

0 

~ x=0.5m 

~o 

o 

~ 0.25m Model A 
Model B 
Model C 

0 , , ~ . . .  ~ .  I , , , 

0 05 y /6  1 

Fig. 3. Streamwise development of turbulent heat flux. 

DNS data are very useful for modeling a flow with 
separation. Especially, the turbulence-energy budget 
close to the wall is the most important knowledge on 
heat transfer, since the structure of turbulent heat 
transfer is almost entirely determined there. There- 
fore, in order to assess the accuracy of  the present 
model for flow field in further detail, we performed 
the calculation corresponding to the DNS by Le et al. 
[25] and compared the computed results with the DNS 
data. The computational technique used is the same 
as that in the preceding paper [9], except that we have 
adopted here the most recent scheme of Kuno et al. 
[26] for pressure calculation. The essential validity of 
the numerical procedure was already discussed in ref. 
[9]. The number of grid points used in this calculation 
is N ~ x N , = 3 8 9 × 1 4 5 ,  so the grid spacing is 
sufficiently fine to obtain a grid-independent solution 
[9]. The Reynolds number is at ReH = 5100, and the 
channel expansion ratio, ER, is 1.2. The velocity-field 
profile of a boundary-layer flow at Reo = 670 is 
adopted as the inlet boundary condition, cor- 
responding to the DNS [25]. 

The present prediction of the flow reattachment 
length becomes : XR/H = 5.92 + 0.02, which agrees 
well with the DNS value of XR/H = 6.0 [25]. The 
uncertainty in the predicted reattachment length 
(+  0.02) is approximately equal to the grid spacing 
near the reattachment point. The budget of the tur- 
bulent energy at x/H --- 4 in the recirculating region is 
shown in Fig. 4. From Fig. 4(a), one can see that 
the present results show excellent agreement with the 
DNS [25] over the whole region. The production and 
dissipation terms, which are the leading terms in the 
budget, are predicted quite accurately, though the 
convection and the turbulent diffusion terms peak 
around y/H -- 1, being slightly closer to the wall than 
the DNS data. In the proximity of the wall, the com- 
putational results are in good agreement with the DNS 
data as shown in Fig. 4(b), except that the turbulent 
diffusion shows an underprediction for the DNS data 
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Fig. 4. Budget of turbulent energy at x/H = 4 (normalized 
by 0o3/H): convection O model, - -  DNS; turbulent 
diffusion [] model, - - - - - -  DNS; viscous diffusion 
model, - . . . . . .  DNS; production & model, - -  . . . .  
DNS; dissipation V model, DNS; (a) overall 
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in the limited region very close to the wall. It should 
be mentioned, however, that the present result gives 
the correct near-wall tendency of the dissipation rate 
that a local maximum occurs at the wall. The profile 
of e near the wall indicates that the simplified wall- 
boundary condition, de/On = 0, has no validity, 
although it has been occasionally adopted as a tem- 
porary expedient. 

From the above discussions, it is confirmed that the 
prediction by the present velocity-field model [9] is 
sufficiently reliable even in the recirculating region of 
a backward-facing step flow. 

5.2. Numerical procedure and boundary conditions for 
thermal field 

In calculating the heat transfer in the backward- 
facing step flow, the finite-difference method was used 
to discretize the governing equations (10)-(12). We 
adopted the third-order upwind difference for the con- 
vection term in equation (10), the first-order upwind 
difference for the convection terms in equations (11) 
and (12), and the second-order central difference for 
the other terms. Time integration for the thermal field 
was performed by the Euler-Implicit method. The 
computational technique and the turbulence model 
for the velocity field were the same as in Section 5.1. 
Figure 5 shows the computational grid system. 
The generalized coordinate system was employed, 
where only the pressure was located in a staggered 
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position [26]. The computat ional  domain is: 
- 3 . 8 H ~ <  x ~< 50H. And the number  of grid points 
is : N~ × N, = 287 × 125, which is enough to provide 
grid-independent solutions for the velocity [9]. Also, 
these grid points suffice for temperature-field cal- 
culations because the thickness of the conductive sub- 
layer in an air flow (Pr -- 0.71) is generally expected 
to be almost the same as that of  the viscous sublayer. 

The calculations were conducted corresponding to 
the experiment by Vogel and Eaton [27]. The channel 
expansion ratio is ER = 1.25 and the working fluid is 
air. We computed the thermal field for five variations 
of the flow conditions, i.e. two cases at different Reyn- 
olds numbers,  ReH, and three cases with different 
upstream boundary-layer thicknesses, 6o/H, as sum- 
marized in Table 1. The boundary  conditions for the 
thermal field are : qw = constant  on the stepside wall 
at x > 0, or 0 on the other wall surfaces, t 2 = 0 and 
etw = ~(0~,/~/~n) 2 at all wall surfaces ; lr is uniform 
at the inlet, and t 2 and etw are set at a sufficiently small 
value of an order 10 ~2 corresponding to exper- 
imental perturbations at the inlet;  and ~2T/~x 2= 
~)27/~x 2 =  ~2~,/~x2 = 0  at the outlet. It should 
be noted that the present boundary  condit ion for ~:t 
at the wall surface is identical with the strict one (see 
Youssef et al. [13]). 

Table 1. Computational conditions for back-step flows 

Case 1 2 3 4 5 

ReH 28 000 28 000 28 000 13 000 13 000 
Reo 3000 1800 500 2000 1200 

6o/H 1.1 0.7 0.15 1.1 0.7 

6. RESULTS AND DISCUSSION 

6.1. Comparison with experimental data 
The computational results for the velocity field for 

case 1 in Table 1 are shown in Fig. 6. The predicted 
flow reattachment length is XR/H = 6.69 + 0.04, which 
is in excellent agreement with the experimental result, 
XR/H ~-- 6.67 [27]. The distributions of mean velocity 
and skin friction coefficient are successfully simulated 
as shown in Fig. 6(b) and (c), though the skin friction 
coefficient in the recirculating region is slightly over- 
predicted compared with the experimental data. 

The computational  results for the thermal field in 
case 1 are shown in Fig. 7. From Fig. 7(a), we can 
recognize that the predictions of the Stanton number  
with all three models A C are in good agreement with 
the experimental data [27], whereas the conventional 
calculation with Pr~ = 0.9 gives substantial over- 
predictions by as high as 30%. The maximum Stanton 
numbers predicted by the models A C are located in 
the region slightly upstream of the flow reattachment 
point, which agrees completely with the experimental 
finding by Vogel and Eaton [27]. Investigating the 
computational  results of three models A - C  in detail, 
we see that model A shows the best agreement with 
the experiment, and the position of the maximum 
Stanton number  predicted with model B is located 
slightly more upstream than with the other two 
models. 

The predicted mean-temperature profiles, on the 
other hand, exhibit different tendencies among the 
models as shown in Fig. 7(b). The variation of mean 
temperature around a location equal to the step height 
(y/H -~ 1) is very important  to examine the validity of 
the characteristic time scale used for modeling tur- 
bulent heat transfer. From Fig. 7(b), we notice that 
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model B gives a tendency different from the exper- 
imental data [27]; the others show reasonable vari- 
ations with a marked kink around the step-height 
location (y/H ~- 1), and the mean temperature profiles 
are in good overall agreement with the experiment. 
The maximum Stanton numbers obtained from the 
computational results for cases 1, 2, 4 and 5 are sum- 
marized in Fig. 8, from which we can readily see that 
the Reynolds-number dependence of the maximum 
Stanton number differs with models. When the 
upstream boundary-layer thickness 60 is fixed, model 
B shows the greatest Reynolds-number dependence 
of the maximum Stanton number. Model A in- 
dicates a ReH-dependence greater than do model C 
and the constant-Prt calculation. The ReH-dependence 
predicted by model C and the constant-Pr, calculation 
are found to be similar to that in a flat-plate flow, 
which conflicts with the experimental evidence [1, 27]. 
From Fig. 8, one can eventually see that model A 
gives the best agreement with the experimental data 
on maximum Stanton numbers, 

As a result of these discussions, we have concluded 
that model A is the most appropriate model to cal- 
culate accurately the turbulent heat transfer in com- 
plex flows with separation and reattachment. In what 
follows, we discuss in more detail the turbulent heat 
transfer in backward-facing step flows through the 
computational results obtained from model A. 

6.2. Conficsions in previous predictions 
First of all, we compare our computational results 

with those by previous representative k-e models to 
confirm the accuracy of our model performance and 
to investigate the relation between the velocity and 
temperature fields for turbulent heat transfer in a sep- 
arated and reattaching flow. The Launder-Sharma 
model (hereinafter referred to as the LS model) [28] 
and that with the Yap correction (referred to as the 
LS+Yap model) [1] are selected for comparison 
because the former was the first low-Reynolds-num- 
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ber I c e  model applied to the calculations of turbulent 
heat transfer with flow separation and reattachment, 
while the latter has been most commonly adopted in 
thermal-field calculations in the near-wall region of 
separating and reattaching flows [1]. 

The comparison of the calculated Stanton numbers 
for case 1 is shown in Fig. 9. Launder et  al. [1, 28] 
demonstrated that the heat-transfer coefficients pre- 
dicted with the LS model were about five times too 
high in the vicinity of the maximum heat-transfer 
point, as compared with the experimental data. This 
was due to the relatively small thickness of the viscous 
(conductive) sublayer and to the calculated too much 
larger turbulent length scales. Thus, it has been long 
believed that the low-Reynolds-number form of the 
k - e  model is not suited for heat-transfer calculation 
in a separated and reattaching flow. Figure 9 recon- 
firms that the LS model gives the same trend as in the 
previous studies [1, 28], in which the Stanton numbers 
were surprisingly overpredicted. The Yap correction 
[1] is regarded as a powerful measure to reduce the 
near-wall turbulent length scale in a separated flow, 
in particular near the flow reattachment point around 
which the maximum heat transfer occurs. From Fig. 
9, we recognize that while the Yap correction offers 
remarkable improvements over the original LS model, 
it still suffers from overpredictions. On the other hand, 
the prediction with model A definitely gives the best 
agreement with the experimental data. 

The comparison of the turbulent length scales for 
heat transfer at the flow reattachment point, L, = ~ / k  ~/2, 
obtained from the computational results is shown 
in Fig. 10. Note that the difference in length scale 
between model A and the constant-Pr, calculation in 
Fig. 10 is due to the difference of the characteristic 
time scale, although they use completely the same 
velocity-field data. From Fig. 10, we can see that the 
proposed model gives the proper turbulent length 
scale near the wall and the order of the magnitude of 
calculated Stanton numbers in Fig. 9 is proportional 
to that of the length scales in the near-wall region of 
0.02 ~< y / H  <~ 0.04, where the eddy diffusivity for heat 
dominates over the molecular diffusivity. 
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Fig. 11. Budget of turbulent energy close to wall at x /H  = 4 
(key as Fig. 4): (a) original Launder-Sharma model; (b) 

Launder Sharma model with Yap correction. 

As discussed before, in order to extend the applic- 
ability of the heat-transfer model to complex flows 
with separation and reattachment, accurate prediction 
of the turbulent velocity field in the near-wall region 
is indispensable. Thus, to examine the accuracy of the 
turbulence models in the near-wall region of separated 
flows, calculations with the LS and the LS+Yap 
models, corresponding to the DNS by Le et al. [25], 
were performed. Comparisons of the turbulent-energy 
budget with the DNS data are shown in Fig. 1 I. Two 
points should be mentioned with regard to this figure. 
First, in the near-wall region y / H  <~ 0.05, most of the 
predicted terms with the LS model show an unac- 
ceptable overestimation in comparison with the DNS 
data as shown in Fig. 1 l(a). In particular, the model 
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predictions of the turbulent diffusion, the viscous 
diffusion and the total dissipation rate are more than 
twice as large as the DNS data. Note that, in these 
models, the total dissipation rate is expressed as fol- 
lows : 

gtota, = g-l- 2V (~@k)  2' (29) 

Figure 11 (a) also shows that the spiky behavior of the 
production term appears in the immediate vicinity of 
the wall but not in the DNS data. These enormous 
overpredictions and unexpected variations are 
thought to be the main reason why the original LS 
model overpredicts the heat-transfer coefficient in the 
recirculating region. Secondly, it is surprising that the 
LS+  Yap model does not accurately reproduce the 
turbulent-energy budget of the DNS data as shown in 
Fig. 11 (b). The prediction of the distribution of the 
total dissipation rate is worse than by the original one 
in the region y / H  >1 0.05. Moreover, in close prox- 
imity to the wall, the viscous diffusion and the total 
dissipation terms have the respective local peak values 
around y / H  " 0.02. This conflicts with the DNS data, 
according to which each local peak appears just at the 
wall. Again, it should be emphasized that the dis- 
sipation rate predicted by the present velocity-field 
model shows the correct behavior in the proximity of 
the wall and agrees almost perfectly with the DNS 
data in the region y / H  >>, 0.05, without any additional 
amendment term (see Fig. 4). 

6.3. Thermal field in backward-fitcin 9 step f low 
Comparisons of the budgets of both the turbulent 

energy k and the temperature variance }5 close to the 
wall at the reattachment point in case 1 are shown in 
Fig. 12. As shown in Fig. 12(a), the production term 
of the turbulent energy equation is negligibly small 
near the reattachment point because the mean shear 
of the velocity t~Y/~y almost vanishes there. As a 
result, in this region, the turbulent diffusion term 
dominates the gain side of the budget. Such a tur- 
bulence energy balance is never seen in an ordinary 
attached shear flow. On the other hand, the budget of 
the temperature variance essentially remains similar 
to that in a fiat-plate or channel flow [20] because the 
temperature field with heat input from the wall has 
the substantial mean temperature gradient O Tidy even 
in the recirculating-flow region. Therefore, in the ther- 
mal field, the main term on the gain side is the pro- 
duction term. As a consequence, no similarity exists 
between the velocity and the temperature fields in this 
type of heat-transfer situation. 

Here, the question arises: Can one accurately pre- 
dict the turbulent heat transfer in separating flows 
with the constant-Prt model, if accurate velocity-field 
data are given? As shown previously, accurate pre- 
diction for a suddenly-heated flow is impossible with 
the constant-Prt model. In that case, there also exists 
dissimilarity between the velocity and temperature 
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Fig. 12. Comparison of budget close to wall at reattachment 
point (case 1, model A) : (a) turbulent energy (normalized by 
U3/H); (b) temperature variance [normalized by 7~ Oo/H 

key as (a)]. 

fields. On the other hand, reasonable predictior~s can 
be achieved with the two-equation heat-transfer 
model as shown in Figs. 2 and 3. Figure 13 shows the 
turbulent-Prandtl-number distributions in the sud- 
denly-heated flow corresponding to Antonia et al.'s 
experiment [7] and in the backward-facing step flow 
for case 1, both of which are computed using model 
A. The calculated turbulent Prandtl numbers in both 
cases are much higher than the conventional value of 
Pr t = 0.9 and, of course, not constant. The present 
results for the former case agree with the experimental 
fact indicated by Sato et al. [8]. From Fig. 13(b), 
the Yap correction mentioned before seems to be too 
effective in reducing the turbulent length scale by sub- 
stantially overestimating the total dissipation rate, 
though it leads to a reasonable heat-transfer 
coefficient with Pr t = 0.9. The internal inconsistency, 
however, cannot be avoided, and the significant depar- 
ture from the DNS data on the energy balance shown 
in Fig. 11 (b) is a salient example. 

The mean temperature profiles normalized by the 
wall parameters for case 1 are shown in Fig. 14, and 
the distributions of temperature variance and tur- 
bulent heat flux in Fig. 15. Corresponding profiles for 
the 'Boundary Layer,' obtained with model A for the 
experiment by Gibson et al. [21], are shown in these 
figures for comparison. From Fig. 14, it can be seen 
that the computed temperature profiles lie con- 
siderably lower than in the boundary layer, in agree- 
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ment with the experimental da ta t  [27]. This tendency 
of the temperature profile appears to be essentially 
similar to that of  the velocity field as discussed in the 
earlier paper [9, 29]. Figure 15 indicates the charac- 
teristics of the turbulent heat transfer in separating 
flows. Obviously, the near-wall profiles of scalar tur- 
bulence are completely different from the familiar 
shapes in a boundary  layer. From these results, we 
may conclude that the conventional log-law is inap- 
plicable not  only to the velocity but also to the tem- 
perature in a separated and reattaching flow. 

6.4. Influence Of upstream boundary-layer thickness on 
heat transfer 

The effect of  the upstream boundary-layer thickness 
on the Stanton number  distribution is shown in Fig. 
16, from which we can ascertain that the present model 
reproduces the characteristics of the Stanton number,  
according to which a peak value increases as the 
upstream boundary-layer thicknesses decrease. It 
should be emphasized that this quantitative agreement 
has never been achieved with any previous turbulence 
models to date [2]. The streamwise variations of the 
local maximums of eddy viscosity v,, and cross- 

1" The friction temperature is expressed as t~ = (qw/pcpm) = 
(qw/pcpUo)/(UdGo). In calculating t~ from the experimental 
data, a value of qw/pcpUo is obtained from the wall tem- 
perature (ref. [27], Fig. 9) and the Stanton number (ref. [27], 
Fig. 12). On the other hand, a value of u,/U0 is obtained from 
the distribution of mean skin friction coefficient (ref. [27], 
Fig. 10). 
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streamwise variations of eddy viscosity vt and tur- 
bulent energy k at the reattachment point for cases 1- 
3 are shown in Fig. 17. Streamwise variations of the 
local v, maximums show a common tendency: the 
local maximum increases linearly with the distance 
from the separation point and peaks at a location 
slightly upstream of the reattachment point. The 
maximum values range from 0.002 to 0.0025 as shown 

in Fig. 17(a), consistent with the results in the earlier 
paper [9]. Moreover, the present investigation has 
elucidated that a slight difference in the growth rate 
of eddy viscosity greatly influences the heat-transfer 
rate. As pointed out by Vogel and Eaton [27] and 
Adams and Eaton [30], the shear-layer turbulence 
increases with a decrease of the upstream boundary- 
layer thickness. Accordingly, the eddy viscosity in the 
shear-layer can be expected to increase with the 
decrease in upstream boundary-layer thicknesses, as 
seen in Fig. 17(a). Further, we notice that the effect of 
the initial boundary-layer thickness on the turbulence 
quantities in the shear-layer region is maintained well 
into the region very close to the wall surface, as shown 
in Fig. 17(b) and (c). Thus, the streamwise variations 
of the turbulence quantities (e.g. k and v0 in the near- 
wall region are greatly affected by the corresponding 
variations in the separated shear layer. 

On the other hand, as suggested by Vogel and Eaton 
[27], the streamwise variation of the fluctuating skin 
friction coefficient C~ is very similar to that of the 
heat-transfer coefficient. As discussed in the preceding 
paper [9], Cf is closely related to the dissipation rate 
on the wall ~w, which can be expressed as follows : 

p {(b,, +~)wd"2 
cf  = (30) ~pol 

where b,~ is the streamwise anisotropy tensor. Need- 
less to say, the dissipation rate in the vicinity of the 
wall is closely related to the turbulent energy there, so 
the streamwise variation of C~. is expected to follow 
the turbulent energy (or eddy viscosity) variation 
shown in Fig. 17. The fluctuating skin friction and 
heat-transfer coefficients are shown in Fig. 18, where 
C~ is obtained from equation (30) with the assumption 
that bu ~ 0.5, based on the channel flow data. The 
predicted distributions of the fluctuating skin friction 
coefficient show a reasonable coincidence wi'th the 
experimental data of Vogel and Eaton [27] as shown 
in Fig. 18(a), though the calculations follow curves a 
little higher than do the experiments. However, as 
mentioned in our earlier study [9], Kasagi et al. [31] 
indicated experimentally that b,, can become smaller 
than b33 near the reattachment point, so the actual 
level of the calculated C~ can thus be lower than that 
in Fig. 18(a), leading to better agreement with the 
experimental data. It is also seen from Fig. 18 that 
the present computations support the experimental 
conclusion by Vogel and Eaton [27] that the variation 
of fluctuating skin friction coefficient C ~ is very similar 
to that of heat-transfer coefficient, 

From these discussions, it can be concluded that 
the heat-transfer coefficient strongly depends on the 
near-wall turbulence intensity dominated essentially 
by the variation of turbulent energy (or eddy viscosity) 
in the separated shear layer near the reattachment 
point. This causal sequence, one must conclude, is the 
main reason why the maximum heat-transfer 
coefficient increases with the decrease in upstream 
boundary-layer thicknesses. 
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Fig. 18. Comparison of streamwise variation of fluctuating 
skin friction coefficient and Stanton number on step side 
wall (Ren = 28 000, model A) : (a) fluctuating skin friction 

coefficient ; (b) Stanton number on step side wall. 

7. CONCLUDING REMARKS 

We have proposed an improved low-Reynolds- 
number  two-equation heat-transfer model where 
u,: = (re) ~/4 is introduced as the characteristic velocity 
to account for the near-wall and low-Reynolds-num- 
ber effects. We have also examined the characteristic 
time scale for turbulent heat transfer and have found 
that a composite time scale which gives weight to a 
shorter scale among the velocity- and temperature- 
field time scales is the most appropriate. 

It is shown that the proposed model  predicts quite 
successfully the heat transfer in an attached boundary- 
layer flow subjected to a sudden change of  the 
wall-heating condit ion and in a separating and re- 
attaching flow downstream of  a backward-facing 
step. Especially, the calculated Stanton numbers in 
backward-facing step flows are in excellent agreement 
with the experimental data of  Vogel and Eaton [27] 
under various conditions of  the Reynolds number and 
the upstream boundary-layer thickness. 

Our computat ional  results of  fluid flow and related 
heat transfer downstream of  a backward-facing step 
reveal the following: (1) In the flow reattachment 
zone, the turbulent-energy balance is totally different 
from that in a boundary-layer flow. The budget of  
temperature variance, on the other hand, remains 
similar to that in a boundary-layer flow, at least quali- 
tatively. (2) In the recirculating region, the turbulent 
Prandtl  number has a value substantially higher than 
the standard one of  Prt = 0.9. Such phenomena can 

also be seen in some classes of  attached flows subjected 
to a sudden change of  wall thermal conditions, and 
thus should be regarded as a natural consequence 
of  dissimilarity between the velocity and temperature 
fields. (3) The conventional log-laws for not only the 
velocity but also the temperature cannot be applied 
to complex flows with separation. 

Finally, we emphasize again that the accurate pre- 
diction of  heat transfer in separating flows is imposs- 
ible without reliable predictions of  the flow field in the 
vicinity of  the wall in the recirculating region. Thus, 
it is indispensable to use a low-Reynolds-number tur- 
bulence model which can fully resolve the near-wall 
region. Once the velocity field is obtained with high 
accuracy, the two-equation heat-transfer model is par- 
ticularly appropriate for predicting heat transfer in 
separating flows where the similarity between the vel- 
ocity and temperature fields fails entirely. 

F rom these arguments, the proposed two-equation 
heat-transfer model (model A) is considered highly 
effective for analyzing complex heat-transfer prob- 
lems involving flow separation and reattachment. 
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